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GPS is a commonly used and convenient technology for determining absolute position in outdoor envi-

ronments, but its high power consumption leads to rapid battery depletion in mobile devices. An obvious
solution is to duty cycle the GPS module, which prolongs the device lifetime at the cost of increased position

uncertainty while the GPS is off. This paper addresses the tradeoff between energy consumption and local-
ization performance in a mobile sensor network application. The focus is on augmenting GPS location with

more energy-efficient location sensors to bound position estimate uncertainty while GPS is off. Empirical

GPS and radio contact data from a large-scale animal tracking deployment is used to model node mobility,
radio performance and GPS. Because GPS takes a considerable, and variable, time after powering up before

it delivers a good position measurement, we model the GPS behaviour through empirical measurements

of two GPS modules. These models are then used to explore duty cycling strategies for maintaining posi-
tion uncertainty within specified bounds. We then explore the benefits of using short-range radio contact

logging alongside GPS as an energy-inexpensive means of lowering uncertainty while the GPS is off, and

we propose strategies that use RSSI ranging and GPS back-offs to further reduce energy consumption. Re-
sults show that our combined strategies can cut node energy consumption by one third while still meeting

application-specific positioning criteria.

Categories and Subject Descriptors: C.2.4 [Computer System Organization]: Distributed Systems; H.4.3
[Information Systems Applications]: Communications Applications; I.6.5 [Simulation and Model-

ing]: Model Development

General Terms: Localization, Energy

Additional Key Words and Phrases: Efficiency, GPS, Mobile, wireless sensor networks, animal tracking

1. INTRODUCTION

Location-aware applications have gained significant interest recently, due to technology ad-
vances in GPS and in embedded communication and processing. While GPS is the dominant
technology for providing location information, it has a relatively high power consumption
(typically in excess of 100mW) that is problematic for mobile devices with small batteries.
Mobile network proposals often assume that GPS can provide absolute location informa-
tion [Ilyas and Dorf 2003] with a given uncertainty, without considering the full range of
operational constraints and the very high energy usage of this technology. The obvious so-
lution is to duty cycle the GPS module to prolong node lifetime. This comes at the cost
of increased position uncertainty whenever the GPS is powered down. Fortunately, most
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applications can tolerate a certain amount of localization uncertainty. If a model of the
node’s motion is known then we can estimate position uncertainty as a function of time.

This paper proposes the use of additional low-power sensor data to infer node locations
and to reduce position uncertainty while the GPS is off. Specifically, we consider radio
ranging between neighbouring nodes. Nodes send radio messages to share their position
and estimated uncertainty with spatially proximal neighbours, which enables sharing of
GPS load among the nodes and an overall reduction in the use of GPS at each node. We
also consider an environment where there is no infrastructure — no cellular towers or fixed
wireless sensor nodes — due to the vast size and remoteness of the areas in which the mobile
nodes must operate.

Our initial analysis reveals that the simple combination of GPS and contact logging re-
duces the power consumption of the GPS module but incurs additional power consumption
for increased radio activity. We then focus on modeling the evolution of position uncer-
tainty over time and the energy implications of different GPS duty cycling strategies and
radio contact logging. Our models use empirical data from long term animal tracking ex-
periments [Wark et al. 2007] where the GPS is always on. The data provides ground truth
position data to build models of node mobility and GPS performance.

This paper considers two classes of positioning applications: (1) applications which can
tolerate a fixed uncertainty in node positions and are representative of location-based mobile
phone applications, vehicle tracking applications, and animal tracking applications; and (2)
applications where the tolerance for position uncertainty varies based on position, which are
representative of virtual fencing [Wark et al. 2007] and collaborative gaming applications.
While we propose a strategy for this second class of applications that can more aggressively
reduce energy consumption, the main focus of the paper is concerned with more common
applications that belong to the first class.

The strategy of combining GPS duty cycling and radio contact logging extends our recent
work [Jurdak et al. 2010] to include comprehensive modelling of two different GPS modules,
modelling the time to achieve a user-defined acceptable uncertainty rather than just GPS
lock, and algorithms for beacon forwarding and event-based beacons.

The contributions of this paper are the following:

— Empirical characterisation of the lock time models for two GPS modules that relate posi-
tion accuracy to on-time and surprisingly, the preceding off-time.

— New GPS duty cycling algorithms, based on the lock time model, and their evaluation
using a detailed simulation and a large empirical dataset.

— Novel methods for augmenting duty-cycled GPS with radio ranging strategies that include
periodic and event-based radio beaconing, beacon forwarding and RSSI-based ranging.

The remainder of the paper is organised as follows. Section 2 presents the related work
in low-power mobile localization. Section 3 introduces cooperative localisation, formally
defines the problem and the performance measures, and develops probabilistic models of
GPS performance and node mobility. We first explore GPS duty cycling in Section 4 and
then investigate the effect of including radio proximity in Section 5. Section 6 discusses the
results and concludes the paper.

2. RELATED WORK

This section presents recent work on GPS variants to reduce time to fix, animal tracking
using embedded networked systems, and energy-efficient localisation.

2.1. GPS Variants

Several variants of GPS receivers exist including Assisted GPS (AGPS) and Differential
GPS (DGPS) [Patil et al. 2011]. AGPS receivers are commonly used in smart phones and
rely on the cellular network and an AGPS server to provide seed data: approximate location,
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reference time, and ephemeris data. This enables the AGPS device to receive signals from
the visible satellites and calculate its position more quickly, reducing lock time and therefore
average power consumption. However, AGPS requires the availability of hardware that is
capable of cellular communication, which is a limiting assumption for applications that use
non-cellular devices, such as for animal tracking. In addition, tracking wildlife and cattle in
remote or rural areas means that cellular signals are not always present. As a result, we do
not constrain our design by an AGPS assumption.

DGPS also assumes the availability of land-based or satellite-based infrastructure to trans-
mit correction data that reduces the time to first fix of a GPS module. As for land-based
RF infrastructure, the availability of Low Earth Orbit (LEO) satellites for transmitting this
correction data is still not validated in practice, and may not apply to deployments that do
not have communication access to these satellites. Patil et al. [Patil et al. 2011] point out
that both AGPS and DGPS do not sufficiently reduce the time to first fix on a cold start
of the GPS receiver. Their proposed optimisations of post processing pseudoranges at the
base stations to reduce fix times are complimentary to our contributions in this paper, as
they can enhance the benefits of GPS duty cycling.

2.2. Animal Tracking

An early instance of animal tracking by networked embedded systems is the Electronic
Shepherd project [Thorstensen et al. 2004], which uses GPS localization for real-time track-
ing of herds of sheep in the mountains. “Real-time” is obtained thanks to GPRS modems in
the collar, even though position is recorded locally and sent back to base only a few times
per day in order to prolong battery life. Unlike our work, nodes are non-homogeneous: only
a few animals in the herd wear collars including GPS and GPRS modules. All the others
wear a small ear-tag including only a microcontroller and a radio-chip. The Networked Cow
project[Butler et al. 2004] used PDAs with GPS and adhoc-mode WiFi to route position in-
formation to a base station. The ZebraNet project [Zhang and et al. 2005] reports individual
position records for zebras every few minutes. In order to make the energy problem more
tractable ZebraNet collars include a solar panel, which assume that the panels are resilient
to normal animal activities. Positioning is done by GPS only, and the nodes propagate their
information by flooding in order to facilitate data acquisition by the mobile sink.

2.3. Energy-efficient Localization

The work in [Winter et al. 2004] considers energy efficient localization for base nodes on the
path of the mobile nodes, and the energy implications of each approach. While the motion
models in [Winter et al. 2004] are similar to this paper, their work is purely simulation-
based and does not consider the benefits of contact logging or online adaptation according to
energy and position changes. The work in [Tilak et al. 2005] addresses the tradeoff between
localization accuracy and energy efficiency. It considers static, dynamic, and dead reckoning
mobility models and studies their effect on accuracy and energy through ns-2 simulations.
Our work addresses the same tradeoff but uses empirical GPS data to conduct analysis on
three different speed models and a realistic energy model of the GPS-enabled nodes that
includes the previously unreported stochastic lock time model. We also consider the effect
of dynamically changing the required localization performance based on the mobile node’s
distance from an exclusion zone. Furthermore, we explore contact logging as a complement
to GPS for achieving a better balance between accuracy and efficiency. In a similar fashion,
Pattern et al. [Pattern et al. 2003] provide a tuning knob to obtain various energy-accuracy
tradeoffs by the careful choice of duty cycle and activation radius.

The works in [You 2008] and [You et al. 2008] address this tradeoff as well by considering
improvements to the Radio Interferometric Positioning (RIP) method [Kusy et al. 2007] as
the baseline localization method. A key difference between You’s work and ours is that we
support a variable uncertainty bound. Another distinction is their use of mote-based RSSI
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localization schemes in indoor environments, which require a deployed network infrastruc-
ture, consume less power, and require a calibration phase. Finally, they do not consider
contact logging for reducing localization uncertainty.

Recent work [Chan et al. 2006] [Liu et al. 2006] has also explored collaborative localization
that enables nodes to detect neighboring signals for position refinement. Chan et al. [Chan
et al. 2006] use a cluster-based approach, where nearby nodes can establish clusters through
IEEE 802.15.4 radios as a neighbour detection sensor that enhances WiFi localization. Our
approach is similar in its reliance on contact signals, but it differs in that the contact signal
is sent and received by the same radio, eliminating the need for multi-radio nodes. Liu et
al. [Liu et al. 2006] also use a form of contact logging that establishes anchor nodes that
know their location (pseudo-anchor nodes) that estimate their location based on contact
with anchor nodes, and free nodes that rely on anchor or pseudo-anchor nodes for their
location. This resembles the multi-hop contact logging in our virtual fencing application.
However, their work focuses on algorithms to bound the uncertainty propagation in iterative
localization techniques through the use of static anchor nodes, while we focus on bounding
the localization uncertainty of mobile anchors and neighbouring nodes that rely on them
within an energy constraint. In addition, nodes dynamically become anchors in our model
based on their current GPS state.

More recently, research has explored energy-aware localization for mobile phones equipped
with GPS. For example Constandache et. al [Constandache et al. 2009] propose an average
error metric for GPS duty cycling. Using proximity mechanisms like Wi-Fi or GSM yields
a lower average error for the same energy budget as plain GPS duty cycling. One of their
mobility models deduces the current location of the node from recent history when the
user is driving on a straight road. Similarly, the work in [Paek et al. 2010] stores historical
information of locations where GPS does not work, and of average speed as a function of
time and place. Our algorithm stores no neighbour history, where each node tracks only
its own uncertainty through contact logging with neighbours. This minimises local stor-
age requirements for individual nodes and training requirements for establishing historical
patterns.

The use of accelerometers has also been proposed as a low power indicator of movement
to supplement GPS duty cycling [Paek et al. 2010][Kjaergaard et al. 2009]. Guo et al. [Guo
et al. 2009] also consider the use of directional and angular speed for cattle behaviour
classification. While the inclusion of inertial sensor readings, such as magnetometers or
accelerometers, is an attractive extension to our approach, the study in this paper focuses
on tracking devices that are not equipped with inertial sensors for localisation.

Two recent works [Paek et al. 2010][Lin et al. 2010] consider Bluetooth as a radio ranging
technology, since it is pervasive in mobile phones. Bluetooth is relatively energy-hungry
for neighbour discovery and frequent beaconing, as it relies on a synchronous connection-
oriented master slave topology. Our work uses lower power IEEE 802.15.4 for radio ranging
that use asynchronous broadcast channels and a flat topology. This enables a single beacon
to be detected by all neighbours within radio range, providing a more scalable approach.

3. COOPERATIVE LOCALIZATION

The notation used in this paper is illustrated in Figure 1. At time tk we obtain a GPS
measurement xk and then turn off the GPS. At the next measurement xk+1, the mobile node
may be either inside or outside the user-set absolute acceptable uncertainty (AAU) bound,
indicated by the large solid circle. Whenever xk+1 falls outside the larger circle, we denote
this as an error, since the system would have failed to deliver a position estimate within
the user-set uncertainty bound. A primary performance metric is the ratio of the number
of errors to the total number of GPS measurements, which we denote as the error rate σ.
For an application the user sets the upper bound σ∗, which we refer to as error tolerance,
and the AAU which can be considered as a precision measure. Our second performance
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Fig. 1. The growing uncertainty (dashed circle) and the maximum uncertainty bound (solid red circle).

metric is the average node power consumption, which is always in tension with the error
rate σ, and is determined by the user to ensure the desired node lifetime for a specified
battery configuration. It is important to note that we are not attempting to estimate the
node position while the GPS is off — our aim is to estimate the uncertainty bound and
to ensure that the next GPS measurement occurs within a defined radius of the previous
measurement.

A key element of our approach is estimating the uncertainty bound (dashed circle in
Figure 1) at any given time. Since we do not know how fast nodes are moving or in what
direction, the simplest model is to assume the nodes are moving at a certain a speed and
to grow the estimated uncertainty linearly with time. When uncertainty approaches the
maximum allowable bound, taking into account the GPS’s lock time1 we turn on the GPS.
If the node’s speed exceeds our assumption, it could end up at the point outside the circle
(marked in red) when the GPS obtains a fix.

3.1. Node Mobility

We consider three attributes of the node mobility model: (1) the distribution of node speed;
(2) an estimate of the current speed based on the previously observed speeds; and (3) the
spatial clustering behaviour of the mobile entities. We illustrate these attributes using GPS
position traces from 30 cow collar nodes collected continuously at 1 Hz over 2 days from a
herd at the Belmont Research Station in central Queensland.

The distribution of node speed is useful for estimating the assumed speed of the mobile
device, as well as the likelihood of variation from that average speed. Figure 2 shows the
cumulative distribution function for cow speed based on the position trace. This distribution
clearly shows that the cows are slow-moving animals, with a speed below 1 m/sec for 95% of

1The GPS module requires a variable time to obtain a position fix, which we denote as lock time and explore
in Section 3.4.
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Fig. 2. Cumulative distribution of observed animal speed. 95% of measurement are below 1m/s, 100% are
below 3.5m/s
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Fig. 3. Correlation of current speed with the speed at the previous sample

the measurements. This serves as a valuable input for the assumed speed in our algorithm
(see Section 4).

The speed at successive samples is not an independent random variable and is strongly
persistent. Figure 3 plots the current speed as a function of speed at the previous time
instant. It clearly shows a strong persistence in speed values. Consequently, we can estimate
future speed predictions as a function of the currently measured speed.

Clustering is another important aspect of node mobility. The clustering behavior builds
on the time series of separation distances between every pair of mobile entities. Separation
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distance information can be obtained using any combination of received signal strength
indicator (RSSI) or the difference in exchanged GPS coordinates. The clustering behavior
can be described by statistics on the separation distance between the entities and also the
duration for which the entities are in contact. These statistics provide expected node density
and expected contact durations among mobile nodes, which in turn guides the decision
on setting GPS duty cycle and radio beaconing parameters. Figure 4 shows the pairwise

Fig. 4. Relative distances between pairs of cows .

internode distances for our cow dataset. The dominance of shorter internode distance drives
our design decisions for radio beaconing in Section 5.

3.2. Energy Model

Our approach tracks node energy consumption by recording the duty cycles of the major
node components [Jurdak et al. 2008]: GPS module, radio, microcontroller unit (MCU),
and other components.

GPS duty cycling is a key factor in our approach. We simply compute the GPS module
energy consumption at any time t during the deployment as

Egps = [PON
gps ×DCgps + POFF

gps × (1−DCgps)]× t (1)

where DCgps is the GPS duty cycle, and PON
gps and POFF

gps are the power consumption of the
GPS module in active and sleep mode respectively. We track the radio energy consumption
as the sum of the transmission, reception, and listening energy values respectively [Jurdak
et al. 2008].

The MCU power consumption is heavily dependent on the GPS and beaconing strategies,
as the MCU must power on when either the GPS module or radio are active. In general,
the MCU duty cycle and energy consumed are expressed as:

DCMCU = DCgps +DCradio − overlap (2)

EMCU = [PON
MCU ×DCMCU + POFF

MCU × (1−DCMCU )]× t
where DCradio is the duty cycle of the radio, and overlap denotes any overlap between the
on-times for the GPS and radio. The only other component that keeps the MCU in active
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state is writing position data to the SD card, which occurs after a GPS lock operation.
The SD write operation takes only a constant 5ms that is independent of the GPS or radio
duty cycle. Because SD writes do not affect the duty cycling strategy and are negligible in
duration compared to GPS locks, we disregard SD operations for our duty cycling analysis.
The remaining node components also have a constant energy consumption. Sections 4 and 5
elaborate on MCU energy consumption further for specific duty cycling strategies.

3.3. GPS Duty Cycling Dynamics

GPS provides the most reliable absolute location estimate outdoors, with an average uncer-
tainty2 of +/- 5m. However, GPS’s high power consumption demands that it is duty cycled
in order to achieve the target lifetime. Whenever the GPS is active, the localization uncer-
tainty is equal to the GPS error Ugps, which depends on the number of satellites currently
visible, the satellite constellation, and the receiver clock error.

Whenever the GPS is powered off at time tk, and until it next acquires lock, the radius
of the position uncertainty region grows progressively according to

U(t) = s× [t− tk] + Ugps(tk)

where s is the assumed speed.
In a GPS duty cycling regime, the GPS module does not output a valid position estimate

immediately after being turned on. It enters a state where the internal filter is initializing.
This is referred to as acquiring lock and is indicated by a flag in the output data packet.
Once it has lock, the GPS reports horizontal dilution of precision (HDOP), an indicator of
error in the horizontal plane, and Pacc, which is the instantaneous error of the GPS position
estimate. This value tends to start high, perhaps several tens of metres, and falls over
consecutive samples to a few metres. The whole process of acquiring lock and an estimate
with acceptable Pacc is simply referred to as obtaining a GPS lock.

Since we require U < AAU , and the GPS has a finite lock time, we need to start the lock
process when t = Toff where

Toff =
AAU − Ugps(tk)

s
− tL (3)

is the GPS off time. Once the GPS module acquires lock at the target position accuracy3

Ugps = Ptarget, the GPS module is powered off again and the cycle repeats. It is clear in
Equation 3 that tL and Ugps are highly dependent on the GPS module behaviour. The
remainder of this section characterises two GPS modules to expose their lock time and
uncertainty features for use in our duty cycling algorithm. Section 4 focuses on how AAU
and s, the controllable parameters in our model, can be set for energy-efficient localisation.

3.4. GPS Model

Any GPS duty cycling for reducing energy consumption may affect the GPS lock time.
The GPS lock time tends to increase when the GPS module is powered off for longer. To
investigate this effect, we conducted two experiments for two generations of GPS modules:
the u-blox generation 4 TIM4-H [ublox a] and the ublox generation 5 NEO5-G [ublox b]).
The NEO5-G provides a kickstart feature that is meant to significantly reduce the time to
first fix by processing weak signals. Each experiment had a duration of one week in which the
GPS was turned off for a random amount of time tO ranging between 10 and 1800 seconds.
Our analysis tracks two metrics: (1) the lock acquisition time ta, which is the time that it
takes the GPS module to report the first HDOP and Pacc; and (2) the position lock time

2The GPS chip uncertainty can vary between 2-15m depending on weather conditions, geographic region,
and antenna size.
3Ptarget is a user-defined acceptable value for the GPS module error, which Section 3.4 explores in detail.

ACM Transactions on Sensor Networks, Vol. 9, No. 3, Article A, Publication date: August 2013.



Energy-efficient Localisation A:9

(a) Lock acquisition time for u-blox version 4

(b) Lock acquisition time for u-blox version 5

Fig. 5. Lock acquisition time as a function of GPS off time for 2 versions of the u-blox GPS module.

tp, which is the time after lock acquisition required for the Pacc to achieve a user-defined
acceptable value Ptarget. The overall GPS lock time tL is simply the sum of ta and tp.

The empirical data from these 1-week experiments for ta is shown as a scatter plot in
Figure 5. The results for the u-blox generation 4 module (Figure 5(a)) shows a linear cluster
of points for the lock acquisition time for GPS off times less than 400 seconds, represented
by

ta = 0.0238tO + 1.21

with a superimposed Poisson random process. For off times greater than 400 seconds, the
lock acquisition times appear to be randomly distributed between 4.5 and 20 seconds. The
performance of the generation 5 u-blox module (Figure 5(b)) exhibits much better lock
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(a) Position lock time for u-blox version 4

(b) Position lock tim for u-blox version 5

Fig. 6. Position lock time as a function of GPS off time for 2 versions of the u-blox GPS module.

acquisition time that is randomly distributed between 0 and 3 seconds, with a small number
of outliers.

After the GPS module acquires its first 3 dimensional lock, it may take several seconds for
Pacc to drop to the acceptable Ptarget value. In our experiments, we set Ptarget at 5 meters,
which is the best accuracy that our GPS module consistently provides, and we observed the
evolution of Pacc starting from the time of first lock acquisition and until it reaches Ptarget.
The results are shown in Figure 6. There is a notable high variance in Pacc evolution for
both modules, with a concentration of measurements at the lower end of the Pacc scale
and a few large Pacc measurements contributing to a higher mean value. In the first few
seconds after lock acquisition, both GPS modules exhibit a sizeable decrease in Pacc. This
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(a) Energy saved for u-blox version 4

(b) Energy saved for u-blox version 5

Fig. 7. Energy savings as a function of HDOP for 2 generations of the u-blox GPS module. The energy
savings are relative to a Ptarget setting of 5m. Curve peaks show the setting of Ptarget that maximises the
off time for the GPS module. For the generation 5 module, setting Ptarget above 13m costs more energy,
as it results in a net increase in the GPS on time.

reduction flattens out thereafter, suggesting that there is a limited benefit in keeping the
GPS module on for longer. The u-blox generation 4 (Figure 6(a)) Pacc at lock acquisition
time is much lower than the generation 5 module, starting at an average of about 22m and
falling to about 6m after a few seconds. The generation 5 module mean Pacc starts much
higher, at about 75m, at first lock acquisition, and starts to match the generation 4 module
after 5 seconds. This effect reduces the overall benefit of the generation 5 module in terms
of overall lock time.
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We now turn our attention to the GPS module uncertainty Ugps. This depends on the
Ptarget setting. At any given time, a GPS lock is useful if the Pacc is less than both the
node’s current uncertainty and the AAU. The choice of an optimal Ptarget value involves a
tradeoff: a lower Ptarget requires the GPS to stay on for a longer time but leads to a lower
uncertainty; a higher Ptarget requires shorter on time for the GPS module but yields higher
uncertainty. Quantitatively, setting Ptarget at a value M meters larger than the minimum
achievable Pmin

target reduces the GPS on time by X seconds, where X = f(M) is determined
by the results from Figure 6. Since Ugps is equal to Ptarget when we decide to power off the
GPS, the resulting off time of the GPS becomes:

Toff =
AAU − (M + Pmin

target)
s

− (tL − f(M))

Reordering the expression yields

Toff =
AAU − Pmin

target

s
− tL + f(M)− M

s

where the first term represents the GPS off time using the lowest achievable Pacc, and is
independent of M. The second term represents the additional amount of time that can
be gained (or lost) per GPS lock by setting Ptarget higher than Pmin

target. The problem of
maximising the GPS off time then simply requires the selection of the value of M that
maximizes

f(M)− M

s

To investigate this tradeoff, we use the data log of the GPS module experiments in
the previous section to determine the value of Ptarget that would minimise the energy
consumption of our nodes. We curve fit the plot of the mean position lock times relative to
Pacc in Figure 6. The resulting functions are:

f(M) = −0.927 +
15.3

M − 5.03
for version 4 and

f(M) = 1.45 +
7.40

M − 4.85
for version 5.

Figure 7 shows the results of this analysis. Since maximising the GPS off time is dependent
on the assumed speed, we consider assumed speeds of 0.4m/sec and 1m/sec. The baseline
energy consumption is for a Ptarget of 5m, and all energy savings are shown relative to this
baseline. In Figure 7(a), setting Ptarget at 13m for an assumed speed of 0.4m/sec enables
the GPS module to remain off for nearly 70% longer than for a Ptarget of 5m. Revisiting
Figure 6(a) clarifies this effect. The position lock time for a Ptarget of 13m is only 2 seconds,
while it may take the GPS module more than 30 seconds to achieve an accuracy of 5m.
Although setting Ptarget at 13m means that the first term in Toff is (13−5)

0.4 = 20 seconds
less, the increase in the second term of Toff yields an overall increase in the off time for
the GPS module. For an assumed speed of 1m/second, the value of Ptarget that yields
the highest energy savings is reduced to 11m. Similar analysis for the generation 5 u-blox
module shows a similar yet shifted trend, with optimal Ptarget values at 11m and 9m for
assumed speeds of 0.4m/sec and 1m/sec respectively. The corresponding energy savings are
smaller than for the generation 4 module, mainly due to the higher Pacc values in the first
few seconds after lock acquisition. Interestingly, the savings diminish for longer Ptarget, and
it becomes more energy expensive to increase Ptarget beyond some value than it is to keep
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Ptarget at 5m, particularly with the 1m/sec assumed speed. In other words, while powering
off the GPS prior to reaching a Ptarget of 5m can save up to 70%, there are diminishing
returns in powering off the GPS too quickly, since the reduction in position uncertainty fails
to justify the energy cost of a GPS fix.

The analysis and experiments in this section have shown that the GPS modules we
have evaluated follow a similar trend for maximising their off time. We define a common
characteristic curve of the form

f(M) = a+
b

M − c
where a, b and c are module-dependent constants. This curve can be used to maximise the
off time of any GPS module. Finding the maximum value of f(M) determines the Ptarget

setting for maximising the off time of the GPS module, which correlates highly with energy
savings for the node. We use these lessons in developing our duty cycling strategy in the
following sections.

4. GPS DUTY CYCLING

The previous section has explored the dependency of position uncertainty on GPS module
behaviour. This section formalises a GPS duty cycling strategy and explores its dependencies
on the controllable factors in Equation 3, namely assumed speed and AAU. The section is
structured as follows. Section 4.1 motivates cooperative localisation through a cattle tracking
application that uses GPS-enabled collars. Section 4.2 formalises our duty cycling algorithm.
Section 4.3 explores the effect of AAU, while Section 4.4 presents 3 different models for the
assumed speed. Finally, Section 4.5 evaluates the performance of the algorithms and their
dependency on uncertainty bound and speed models.

4.1. Motivating Application

We consider an outdoor location monitoring application for tracking cattle using smart
collars, as shown in Figure 8, that contain wireless sensor nodes and GPS modules. The
goal is to track cow positions, and in some cases, enforce exclusion zones within the paddock,
in effect a virtual fence [Butler et al. 2004; Wark et al. 2007]. Virtual fencing is useful for
managing cattle in vast grazing lands, such as in Australia, where farms can reach the sizes
of small countries, and it is not economically feasible to install physical fences in the whole
area.

The error tolerance σ∗ for this application is 5%. The target node lifetime is 3 months,
which is the interval at which the animals are brought in for health checks, treatment and
sorting. Achieving this lifetime is a challenge because the GPS module on each node has
a large current draw 4. Our cattle monitoring application and cow collar setup are fully
described in [Wark et al. 2007]. We limit the discussion here to a high level description of
the collar setup and the energy consumption of each of its components.

The collars incorporate a Fleck node, a GPS module, and an audio board for generating
audio cues to indicate to animals that they are crossing a virtual fenceline. The Fleck node
itself comprises an Atmel-1281 MCU and Atmel RF212 radio. Four D-Cell batteries in series
provide power to all the collar components via several switch-mode regulators. The weight
of these batteries yields a collar weight that approaches the upper limit of 1.5 Kg set by an
animal ethics committee in Australia, so larger batteries are not an option.

The active and sleep mode power consumption of these components are shown in Table I.
The power consumption of the GPS board is the largest by far. To put things in perspective,
Figure 9(a) illustrates a scenario with the GPS constantly active. Using our collars with a

4Smart phones that include GPS modules involve similar considerations, albeit with more regular opportu-
nities for recharging batteries.
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Fig. 8. A cow with our smart collar

Table I. Active and sleep mode power consumption for collar components

Component Active ModePower (mW) Sleep Mode Power (mW)
MCU 18 1.2
Radio (TX) 79.2 0.00825
Radio (RX) 29.7 0.00825
GPS 165 0.215
Switch-mode Regulator 6 6
Linear Regulator 3.3 3.3
Audio 3 0

10% radio duty cycle, based on a 6ms check interval and 60ms sleep interval, and an always-
on GPS board, the GPS accounts for 88% of the power consumption of 209 mW and limits
the nodes’ lifetime to 19 days. Figure 9(b) sets the GPS duty cycle at 5%, while maintaining
the same setup for all of the collar components. In this scenario, the GPS accounts for about
a third of the overall node power consumption of 25mW, which extends the nodes’ lifetime
by a factor of 7.5 (nearly 6 months). This confirms the importance of duty cycling the GPS
on the mobile nodes. In both scenarios, the MCU remains on only as required to service to
the GPS or radio, which couples its duty cycle to these components’ duty cycles.

4.2. Duty Cycling Algorithm

Figure 10 illustrates the algorithm for duty cycling the GPS module. The algorithm uses the
choose speed() function to select the speed model. At each time step the algorithm checks if
the GPS has lock and if so it obtains the position, sets the uncertainty to Ugps, then powers
off the GPS. Otherwise, it grows the uncertainty according to the current speed Sc. Once
the uncertainty approaches AAU, it turns on the GPS and the process repeats.

The value of s can be specific to each mobile node, and can be a constant, or vary as a
function of time and space. The lock time, tL, has a weak dependence on the length of time
that the GPS has been off, which we can control. It also depends on factors beyond our
control, such as the time varying satellite configuration and the deployment environment.
In practice, a “best estimate” of tL is used or updated in real-time on the node based on
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(a) Always on GPS (b) GPS with a 5% duty cycle

Fig. 9. Impact of GPS duty cycling: Reducing GPS duty cycle from 100% to 5% reduces the node power
consumption by 7.5 times. The radio has a 10% duty cycle in performing low power listening for both cases.

the measured time taken to acquire lock. Nevertheless, long lock times will occur with low
probability, which means that the estimated uncertainty will occasionally exceed AAU.

loop {t}
choose speed()
if GPS == LOCK then

position ← GPS position
U ←Ugps

lastlocktime = now()
GPS = OFF

else
U ← U + (t * Sc)
if GPS == OFF and U+(tL*s)> AAU then

GPS = ON
end if

end if
end loop

Fig. 10. GPS duty cycling strategy

4.3. Uncertainty Bounds

Most positioning applications require a fixed uncertainty bound. For a specific class of
applications, such as virtual fencing, the AAU can vary dynamically during the deployment
according to application state. For instance, in the virtual fence application, the AAU can
vary as a function of the node’s position and is the distance of the node from the virtual
fence line. If the node is 1000 meters away from the fence, we simply require that the next
time the GPS makes a measurement, it will not have crossed the fence line. If we assume
the node has a maximum speed of 1m/s (which is true 95% of the time), then a node can
keep its GPS off for more than 985 seconds, with a conservative estimate of 15 seconds for
GPS lock time. A node that was 100m away from the fence at the last lock can keep its
GPS powered off for 85 seconds. Comparatively, a fixed AAU of 50m would result in a GPS
off time of only 35 seconds. The sizeable increase in GPS off times relative to a fixed AAU
can greatly reduce the average power consumption for applications with dynamic AAU.

Figure 11(a) illustrates the effect of AAU on the growth of the estimated uncertainty,
with Ptarget set at 13m, the optimal value for the u-blox generation 4 module. The actual
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(a) Uncertainty behaviour for a static AAU

(b) Uncertainty behaviour for a dynamic AAU

Fig. 11. Effect of AAU on uncertainty behaviour

displacement in this plot indicates the ground truth displacement 5 of the mobile node since
the last GPS lock. In the real system actual displacement is not available — position errors
are only discovered when the node acquires its next GPS lock. The purpose in tracking
the actual displacement here is to determine how well our uncertainty estimates the nodes’
mobility.

We choose an assumed speed s of 0.4 m/sec for the nodes, which is the average node speed
in the cow dataset, and the estimated uncertainty grows linearly while the GPS module is
powered off. When uncertainty approaches AAU, the node activates the GPS and keeps it
on until Pacc reaches Ptarget, resulting in periodic duty cycling of the GPS. A total of 12
GPS locks occurred in this time window.

In Figure 11(b) the AAU is varied according to the distance between the last observed
position of the mobile node and the virtual fence line. While the user sets an initial AAU of
50m, the AAU rises to about 80m at the first GPS lock, reflecting how far the cow is from
the virtual fence. The AAU increases to further to 97m and 125m at the next two GPS locks.
The higher AAU allows the node to keep its GPS module powered off for longer, reducing

5Based on 1 Hz GPS data.
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Static Dynamic Probabilistic
Sc = s if (s(t)> s) i=t-lastlocktime

Sc=s(t) if (i==0)
else Sc=s(t)
Sc = s if (Sc > s)

P = t22
else
P = t11

else
Sc = P × Sc + s(1− P )

(a) (b) (c)

Fig. 12. The choose speed() function for each speed model

Table II. Probabilities of remaining in the same state (moving or stationary) as the assumed speed
varies.

Assumed 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
Speed (m/s)
t11 0.82 0.89 0.92 0.93 0.94 0.95 0.96 0.96 0.97 0.97 0.97
t22 0.86 0.85 0.84 0.84 0.83 0.82 0.82 0.81 0.81 0.81 0.81

the number of GPS lock attempts to 4, with the actual displacement never exceeding the
uncertainty.

4.4. Speed models

The assumed speed is a critical parameter. If it is too low, then the AAU bound will be
violated when the animal moves quickly. If it is too high, the GPS off times will be very
short which is costly in terms of power. Choosing the right speed requires a speed model,
which is highly dependent on the application. The data in Figure 2 indicates an average
cow speed of only 0.4 m/sec, and 95% of the time the cows move at 1m/sec or less, with an
absolute observed maximum of 3.5m/sec.

We explore three models for the assumed speed s, which are summarised in Figure 12:

(1) Static: based on a constant assumed speed
(2) Dynamic: based on setting the assumed speed as the last observed speed of the mobile

node, read from the GPS speed value from the GPS module at last lock
(3) Probabilistic: based on setting the assumed speed on the basis of the last observed speed

and a state model of the mobile node

The static and dynamic speed models are application-independent. The static speed
model assumes a low variance from an average speed and uses this estimate for the en-
tire deployment. The dynamic speed model assumes a high correlation between the most
recent speed measurement and the current speed estimate, i.e. persistence. The probabilis-
tic speed model also relies on persistence, but assigns application-specific probabilities for
decaying speed estimates. For instance, previous work has modeled animal mobility as a
3-state Markov process [Guo et al. 2009]. Unlike some other mobility models in the litera-
ture for mobile phone or car applications [Lin et al. 2004], the animals do not follow specific
routes, rather they spend a lot of time in random foraging behaviour.

The probabilistic model in this paper is a simplification of the Markov model of cow
speed in [Guo et al. 2009] where the animal has a slow- and a fast-moving state, states
1 and 2 respectively. State transitions from state i to state j are referred to as tij . Using
data from the 2-day cattle position trace, we determine the transition probabilities for each
state based on the observed speed. Table II shows the probabilities for remaining in either
the stationary or moving state based on the assumed speeds. There is clearly a high degree
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(a) Uncertainty behaviour for the static speed model

(b) Uncertainty behaviour for the dynamic speed model

(c) Uncertainty behaviour for the probabilistic speed model

Fig. 13. Effect of speed model on uncertainty behaviour

of persistence for both states. Nodes are more likely to stay in the stationary state (state
1) for higher assumed speeds, and they are slightly less likely to stay in the moving state
(state 2) with higher assumed speeds. These transition probabilities are then stored at the
mobile nodes.

Whenever the GPS acquires lock in the probabilistic model, we set the assumed speed
to the last observed speed, as for the dynamic model. When the GPS is powered off, the
assumed speed gradually moves toward s using a first-order filter. The time constant is a
function of the transition probability of the initial state. The reasoning is that as the time
since the last speed observation grows, its significance decreases until at some point, and
without any other data we revert to a constant assumed speed.

Figure 13 illustrates the effect of each speed model on uncertainty estimation for a con-
stant AAU. All three models use the same s of 0.4 m/sec. The uncertainty in the constant
speed model (Figure 13(a)) grows regularly according to s, resulting in 9 GPS locks. For the
dynamic speed model in Figure 13(b), the uncertainty growth rate follows the changes in
s. For instance, at 100 seconds, the node acquires lock and observes that the current speed
is higher than s, and as a result, it increases s to better model the actual motion. At the
following GPS lock, the same node observes a further increase in the measured speed, and
increases s again for its speed estimate. The dynamic model adapts better to node speed
changes while increasing the number of necessary GPS locks to 12. Finally, the probabilistic
model results in 9 lock attempts, yielding similar performance to the static speed model.
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This similarity is due to the GPS lock times in the probabilistic model in this example,
which appear to align with speeds that are below the constant assumed speed, leading to
the constant assumed speed being used for most of the time.

4.5. Performance Evaluation

To evaluate the impact of our GPS duty cycling strategy on position accuracy and en-
ergy efficiency, we have implemented the duty cycling strategy of Figure 10 in a detailed
Python-based simulator that uses the cow position data described in Section 3.1. Each GPS
module is represented by a class that implements a simple state machine which includes
the probabilistic lock time model of Figure 5 and the preceding off time. When the GPS is
turned off, the simulator evolves the uncertainty estimate according to the speed model. The
simulator keeps the GPS module off for Tmax seconds then turns it on to start the locking
process. When the simulated GPS obtains lock, the true position is used to determine if
the AAU constraint has been violated and to update the error rate σ. The simulator also
updates the average power consumption for the GPS, radio, MCU and regulators based on
the energy model in Section 3.2, which enables the computation of the node’s overall power
consumption.

We initially fix the AAU to 50m and explore the impact of changing the assumed speed
for each of the three speed models. The results are shown in Figure 14. As expected the GPS
power consumption dominates the node power consumption in all cases. The GPS power
consumption increases with assumed speed, since the faster growth in estimated uncertainty
triggers more frequent GPS fixes. Because the GPS and radio timers fire completely inde-
pendently, the overlap parameter for computing the MCU duty cycle is zero. The MCU
power consumption increases with increasing GPS activity, as the MCU has to remain in
active state for interacting with the GPS module. The radio power consumption, based on
a low power listening duty cycle of 5% with 6ms check interval and 128ms sleep interval, is
a small contributor to the overall node power consumption, since it only sends short data
packets every minute back to the base station.

The GPS power consumption of the probabilistic speed model has the lowest dependence
on the assumed speed, as it always uses the most recent observed speed estimate for most
of the time. For low assumed speeds, the dynamic speed model has a slightly higher power
consumption than the static speed model, because it occasionally uses a much higher as-
sumed speed when it happens that the speed observed over the previous interval is high.
As the assumed speed increases, both the static and dynamic speed models exhibit similar
behaviour, as there are fewer instances where the dynamic model switches to current speed
values. The dynamic speed model performs best in terms of accuracy, with its error rate σ
decreasing steadily with increasing assumed speed, from about 6% at an assumed speed of
0.2m/sec to less than 0.3% for assumed speeds above 1.2 m/s. The probabilistic and static
speed models have similar power consumption at low speeds, with a slight advantage in
error rate for the static model. At higher speeds, the static model achieves lower error rate
at the cost of higher power consumption, since it always maintains a conservative assumed
speed, while the probabilistic model can often use a lower assumed speed according to its
state machine.

Figure 15 shows the effect of enabling dynamic AAU in a virtual fencing application
according to distance from the fence. The variance of results here, indicated by error bars,
is noticeably higher than for static AAU, because of the disparity among nodes’ distances to
the fence during the deployment. The dynamic AAU reduces the GPS power consumption
by more than half for low assumed speeds, and more than 70% for higher assumed speeds.
For assumed speeds of 0.4m/s or less, the GPS power consumption accounts for less than
the MCU or the other node components, at a cost of increased error rate. The overall node
power consumption increases more linearly with assumed speed for dynamic AAU. At the
highest assumed speed of 1.4 m/s, the overall node power consumption is about 40% of
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Fig. 14. Power consumption and error rate for the 3 speed models (fixed AAU). S: static, D: dynamic, and
P: probabilistic.

the static AAU case. The reduced power consumption of dynamic AAU comes at the cost
of a higher error rate. This stems from the longer off times for the GPS modules, which
increases the expected lock times and the instances where the GPS takes a very long time
to obtain a fix. While dynamic AAU can yield significant energy savings at the cost of
slightly higher error rates, dynamically changing AAU according to the distance from the
fence is a specific feature of the virtual fencing application and similar tracking applications
with known boundaries. The remainder of the paper focuses on static AAU, which is more
representative of a wider class of GPS-enabled mobile applications.

5. COUPLING GPS AND CONTACT LOGGING

The previous section has presented a GPS duty cycling strategy which bounds position
uncertainty to improve energy efficiency. Mobile nodes can also use non-GPS relative lo-
calization signals to reduce position uncertainty while the GPS module is powered off. For
instance, neighboring nodes can share their location estimation over short-range radio com-
munications. This strategy is particularly attractive for application classes where several
mobile nodes cluster together, such as cattle tracking.
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Fig. 15. Power consumption and error rate for the 3 speed models (dynamic AAU). S: static, D: dynamic,
and P: probabilistic.

5.1. Overview

Consider that node A has powered off its GPS and is growing its estimated uncertainty as
a function of time. When node A is some distance r̂ from node B, node A receives node
B’s beacon. Node A can infer that node B is within a contact radius of R, where R is the
conservative bound of communication range (R ≥ r̂ for all beacons).

The beacon from B also includes its last measured position xB
k and its current uncertainty

estimate UB . If UB + R < UA then node B is nearby and has a lower uncertainty than
node A. In this case node A lowers its uncertainty estimate

UA := UB +R (4)

Lowering the estimated uncertainty enables node A to keep its GPS off for longer, which in
turn reduces its energy consumption. If all nodes run this algorithm, the energy-expensive
GPS position lock is shared across the nodes. The fairness of the algorithm stems from the
fact that when node A relies on node B for its position estimate, UA > UB . If the two
nodes use the same assumed speed to grow their uncertainty, then node A will decide to
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(a) Error behaviour for GPS duty cycling

(b) Error behaviour for GPS duty cycling coupled with contact logging

Fig. 16. Impact of contact logging on GPS duty cycles

turn on its GPS before node B in the next cycle, which allows B to rely on A for its position
estimate in the next cycle6.

If a node’s estimated uncertainty approaches AAU, it turns the GPS on. If the GPS is
acquiring lock when UA is updated and if UA < AAU − s× tlock then node A should turn
off its GPS, even without acquiring lock.

Figure 16 illustrates the impact of contact logging on GPS duty cycling for two nodes
that are sending contact beacons every second. Without contact logging (Figure 16(a)),
each node independently tracks its uncertainty estimate and acquires a GPS position fix
whenever its uncertainty approaches AAU, resulting in 7 fixes for node 1 and 6 fixes for
node 2. Using contact logging with R=10m, the nodes can reduce their GPS fixes to 5 and 4
locks in the same time window. Consider the plot at 480 seconds. The uncertainty for node 2
approaches AAU, so it powers on its GPS and obtains a position fix. Node 1, which is in the
vicinity of node 2, can rely on the latter’s recent GPS fix to reduce its uncertainty to the 10m

6Using a variable speed model can result in exceptions to this trend, but contact logging will result in
long-term sharing of GPS load if the assumed speed follows the same random distribution on all nodes.
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contact radius plus Ugps. This example illustrates the fairness feature in our contact logging
strategy, since nodes that recently acquire lock will have a smaller uncertainty estimate
than neighbours, forcing another node to turn on its GPS in the next round.

In general, each node in a cluster of N nodes that are using our contact logging strategy
would have a theoretical maximum off time according to:

TN
off =

N(AAU − Ugps −R)
s

However, achieving this theoretical maximum requires that the node GPS lock schedules
are sufficiently desynchronised. For N > 2, contact logging may generate implicit synchro-
nisation among several nodes that rely on a neighbour acquiring GPS lock. This can reduce
the effective GPS off time of a cluster larger than 2 nodes. The dynamic speed model does
implicitly contribute to desynchronisation within a cluster, but its benefits are limited as the
node movement within a group is typically similar to other nodes in the cluster. Section 5.4
proposes a simple backoff mechanism for avoiding beacon transmission synchronisation, but
uncertainty cycle desynchronisation is an open issue that is beyond the scope of this work.

Our contact logging strategy depends on the settings of two variables: (1) the contact
radius; (2) the contact beacon period. The contact radius specifies the value of R, which
must balance the need to cover larger areas with a higher R and to reduce uncertainty
with a lower R. The beacon period is the time between beacons at each node. It involves a
tradeoff: short contact periods increase the likelihood of useful contact but incur a higher
energy cost.

Section 5.2 presents simulations based on empirical data to determine the operating points
for contact radius that balance these tradeoffs. Section 5.3 then investigates the impact of
beacon period on the energy/accuracy tradeoff.

5.2. Contact Radius

5.2.1. Contact Radius Selection. We now explore the effect of the contact radius setting on
performance. The main mechanism for setting the contact radius is to change radio receiver
sensitivity and/or to change radio transmit power. Given that these settings will not provide
a fixed or uniform signal transmission, the value of R conservatively reflects the maximum
contact radius.

To accurately model the tradeoffs of contact logging, we extended our Python simulator
with a Message class. Each instance of the Message class represents a contact beacon which
enables communication between instances of the Collar class. A transmitted contact beacon
is registered as received if the distance between the sender and receiver is less than the
contact radius. The time slot for sending contact beacons and the order in which nodes
send and receive contact beacons are randomized to avoid simulation seeding artifacts. Each
beacon contains the following information: node ID, node position, and node uncertainty.

Figure 17 summarizes the impact of contact radius on node energy consumption and
error rate for the entire cattle data trace. The contact beacon period is set to 1 second. The
overlap parameter here for the DCMCU is equal to DCgps, as the frequent radio beacon
transmissions and channel checking imply that the radio nearly always on when the GPS
module is on. For all contact radii we considered, the error rate remains within the 5%
tolerance for our application. In terms of energy efficiency, the optimal contact radius is
5m, which confirms the analysis in [Jurdak et al. 2010]. Although contact logging reduces
GPS duty cycle by up to 60%, the overall node power consumption is only marginally
reduced, as contact logging increases the radio activity and associated MCU activity. A
contact radius of 20m provides the lowest error rate, as it effectively limits useful contact
beacons to 1-hop. This is a direct consequence of adopting a Ptarget of 13m and an AAU
of 50m, meaning any node logging useful contact would set its uncertainty to 33m. This
node will not serve as a position reference for any other neighbour, because it can only
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provide these neighbours with a position estimate with uncertainty of 53m, which is higher
than the AAU. For contact radii of 5m and 10m, multi-hop contact logging is possible,
but it appears to have a slightly negative effect on error rate. As the contact radius is
increased above 20m, the improvements in error rates move towards the plain GPS duty
cycling case, simply because the nodes high uncertainty limits the portion of time they can
rely on contact logging position estimates. The radio power consumption notably increases
for larger contact radii, which increases the range of node transmissions and causes more
overhearing. The conclusion from these results is that simple contact logging with a fixed
radius and a 1 second beacon period does not yield worthwhile benefits over simple GPS
duty cycling.

Fig. 17. Effect of contact radius (static AAU)

5.2.2. RSSI-based Ranging. As mentioned above, estimating the distance r̂ between two
nodes as the radio range R is conservative. The use of received signal strength indica-
tor (RSSI) can relax this estimate. While RSSI is a poor estimator of absolute range in
mobile or non-line-of-sight environments due to multi-path signal propagation and interfer-
ence, it still highly correlates with range between two nodes [Srinivasan and Levis 2006].
Here, we use RSSI to bound the range between two nodes as follows. Line-of-sight RSSI
measurements with varying distance are collected prior to deployment in an open field. Let
the line-of-sight RSSI value of two nodes that are r̂ meters apart be X. If during a deploy-
ment, a node measures an RSSI of X from a neighbour, then the neighbour is at most r̂
meters away.

Figure 18 shows 2400 line-of-sight RSSI measurements we collected for the Atmel RF212
radio that is used in the collar nodes. The measurements were collected by fixing a mobile
node in a field near our office and moving another node within a 70m radius around the
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fixed node. Moving the transmitter in different directions around the receiver was to reduce
any biases arising from the antenna radiation pattern not being fully omni-directional. Both
nodes remained at an elevation of 1m from the ground. Each point in the figure corresponds
to a single RSSI measurement. The solid line represents the maximum distance at which
each discrete RSSI value was recorded by the RF212 radio in our measurements. For the
purpose of radio ranging, we can use this line as a less conservative estimate of r̂ for any
RSSI X.

The last bar plot in Figure 17 shows the power consumption and error rate for RSSI-
based contact logging. It achieves a similar GPS duty cycle as a fixed contact radius of
5m, but its radio power consumption is higher because it uses the highest transmission
power for RSSI ranging. This causes more overhearing at all nodes and increases the radio
power consumption. In terms of error rate, the RSSI-based contact logging behaves similarly
to plain GPS duty cycling. In summary, RSSI-based ranging has no explicit performance
benefits over plain GPS duty cycling or 5m contact logging, but it provides a more dynamic
approach for logging contact at variable distances.

Fig. 18. Line-of-Sight RSSI measurements for RF212 Radio. The bounding line represents the maximum
possible line-of-sight distance for each observed RSSI value.

5.3. Beaconing Period

The baseline contact logging protocol is periodic, where each node has an internal timer
for triggering transmission of contact beacons. Whenever neighbours hear contact beacons,
they determine whether to rely on their neighbour’s position estimate if that reduces their
uncertainty. The choice of contact period is dependent on many independent factors, includ-
ing the clustering patterns of nodes, their relative speeds, terrain, and AAU. This suggests
the need for adapting the contact beacon period to these factors, which is a non-trivial
optimisation problem with highly dynamic and unpredictable inputs.

Before attempting to solve this problem, we first explore the impact of the contact beacon
period on the accuracy/energy tradeoff in the first part of this section. Next, we propose
an event-driven contact beacon transmission, based on local position state changes.
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Fig. 20. Periodic and event-based beacons

5.2 Beaconing Period

The baseline contact logging protocol is periodic, where each node has an internal
timer for triggering transmission of contact beacons. Whenever neighbours hear
contact beacons, they determine whether to rely on their neighbour’s position esti-
mate if that reduces their uncertainty. The choice of contact period is dependent on
many independent factors, including the clustering patterns of nodes, their relative
speeds, terrain, and AAU. This suggests the need for adapting the contact beacon
period to these factors, which is a non-trivial optimisation problem with highly
dynamic and unpredictable inputs.

Before attempting to solve this problem, we first explore the impact of the contact
beacon period on the accuracy/energy tradeo↵ in the first part of this section. Next,
we propose an event-driven contact beacon transmission, based on local position
state changes.

5.2.1 Periodic Beaconing. To investigate the e↵ect of beacon period, Figure 20
shows the power consumption and error rate for contact beacon periods of 1, 5, 10,
20, and 50 seconds. Increasing the contact beacon period from 1 to 5 seconds re-
duces both power consumption and error rate. While a longer beacon period causes
GPS power consumption to increase, it also shrinks the radio power consumption.
For beacon periods of 1 second, we observed that the GPS power consumption
remains relatively high. The reason is that, on many occasions, a node powers its
GPS on to get lock, only to turn it o↵ before getting lock, due to the reception of
a useful message from a neighbour. This continuous switching of the GPS module
prevents it from lower its consumption further with short beacon periods.
ACM Transactions on Sensor Networks, Vol. Submission, No. 1, Dec. 2010.
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Fig. 19. Periodic and event-based beacons

5.3.1. Periodic Beaconing. To investigate the effect of beacon period, Figure 19 shows the
power consumption and error rate for contact beacon periods of 1, 5, 10, 20, and 50 seconds.
Increasing the contact beacon period from 1 to 5 seconds reduces both power consumption
and error rate. While a longer beacon period causes GPS power consumption to increase, it
also shrinks the radio power consumption. For beacon periods of 1 second, we observe that
the GPS power consumption remains relatively high. The reason is that, on many occasions,
a node powers its GPS on to get lock, only to turn it off before getting lock, due to the
reception of a useful message from a neighbour. This continuous state switching of the GPS
module prevents it from lowering its consumption further with short beacon periods.

5.3.2. Event-based Beaconing. An additional effect with periodic beaconing is the implicit
synchronization of several neighbours of a node that obtains lock. When the node obtains
lock, its beacon informs its neighbours of this event, and all neighbours set their uncertainties
accordingly. If the neighbours happen to be within the same r̂ from the node, and with
similar assumed speeds s, then they are likely to turn on their GPS modules at nearly the
same time during the next cycle.

To counter this effect and to reduce radio power consumption further, we propose event-
based beacons as an alternative to periodic beaconing. In this approach, a node send its
contact beacon whenever it locally detects one of the following position state changes: (1)
its position is updated upon obtaining GPS lock; (2) its position is updated upon receiving
a useful beacon from one of its neighbours; or (3) it has powered on its GPS module and
is in the process of obtaining GPS lock. A beacon sent in state (3) serves as a GPS lock
backoff beacon, and its purpose is to inform neighbouring nodes that it will imminently
obtain lock, thereby avoiding the implicit synchronization issue.

To support event-based beaconing, nodes use a modified beacon format that includes the
expected time to obtain lock (based on history of lock times and off times).This beacon is
known as the GPS lock backoff beacon. Figure 20 illustrates how event-based beaconing
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Fig. 20. Event-triggered beaconing example: nodes only send beacons when they are getting lock, they get
lock, or they log a useful contact with a neighbor

works. At time t1, node A obtains a GPS lock. As a result, it sets its uncertainty to Ugps(t1)
and broadcasts a beacon declaring its id, uncertainty, and position. Node B receives this
beacon at time t2, and, after determining that contact with node A reduces its own uncer-
tainty, sets its uncertainty according to Equation 4. Nodes A and B then proceed to grow
their uncertainty region according to their local speed models. At time t3, node B hears
a beacon from node C with a low uncertainty, and updates its local uncertainty region.
Subsequently, it broadcasts a beacon announcing its updated uncertainty, enabling node A
to reduce its uncertainty as well at time t4. By time t5, the uncertainty at node A grows
close to AAU, so A decides to power on its GPS module to avoid exceeding AAU. It also
broadcasts a GPS lock backoff beacon informing all its neighbours of this action to avoid
multiple neighbours trying to simultaneously get GPS lock. Node B hears this beacon, and
refrains from powering on its GPS module to get lock. At time t6, node A succeeds in getting
lock, reducing its uncertainty to Ugps(t6), and broadcasts a beacon informing neighbours
of this change. Finally, B hears node A’s beacon at time t7 and updates its uncertainty as
well. During all these exchanges, four radio packets are transmitted and received, node A’s
GPS obtained 2 locks, while node B’s GPS module remained in off mode.

The last bar plot of of Figure 19 shows the results for event-based beaconing. It achieves
both the lowest power consumption and error rate for all of the configurations we consider.
The energy saving from event-based beaconing stems from 2 factors: (1) the reduced radio
beaconing enables the radio to sleep more often; and (2) the reduced overlaps in GPS lock
attempts significantly reduce the GPS power consumption.

Finally, we consider the effect of combining RSSI-based contact logging and event-based
beaconing on error rate and power consumption. Figure 21 summarises the results of the
various contact radius and beacon configurations in the paper, including GPS duty cy-
cling, GPS duty cycling with contact logging (contact radius of 5m and beacon period of 5
seconds), RSSI-based contact logging with 5 second beacon period, event-based beaconing
with a 5 m contact radius, and event- and RSSI- based contact logging. The latter yields
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Fig. 21. Comparison of configurations. Combination of RSSI-based and event-based beaconing provides
the lowest error rate, but the event-based approach with a 5 m contact radius appears to provide the lowest
energy consumption while remaining well within the error tolerance.

the lowest error rate at 1% while increasing power consumption to 28mW. The increased
power consumption of this strategy stems from the use of the highest transmit power for
RSSI-based beaconing and from the fact that RSSI-bounding of uncertainty is rarely lower
than 5m (which causes more frequent GPS locks). This means that event-based beaconing
with a 5 m contact radius remains the most energy-efficient approach while providing an
error rate that is well within the application’s error tolerance of 5%.

5.4. Beacon Forwarding

The previous section has shown that event-driven contact beacons can improve both the
error rate and the power consumption of mobile nodes. However, the utility and cost of
forwarding these contact beacons over multiple hops remains unclear. Multi-hop forwarding
of contact beacons can contribute to bounding position uncertainties further to achieve
lower GPS duty cycles, but it also leads to more packet transmissions and receptions, which
increases energy consumption and can cause congestion.

To investigate this issue, we implement three versions of event-based contact logging in
our simulator:

(1) No forwarding: nodes that receive a useful contact beacon do not forward it.
(2) One-hop forwarding: a useful beacon is only forwarded once.
(3) Multi-hop forwarding: there is no hard limit on the forwarding of beacons. Nodes for-

ward a beacon as long as they deem it useful.
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Table III. Dynamics of the 3 forwarding strategies

Strategy Unc. Gain (m) Beacons Tx Beacons Rx Useful Beacons e θ
None 715088 11099 51095 37476 64.43 0.733
1-hop 789861 31227 223012 41190 25.29 0.185
Multi-hop 829164 49892 370458 46386 16.62 0.125

Forwarding strategy (1) limits the number of beacons transmitted and received but also
constrains the utility of a beacon to a single radio neighbourhood around a node that
acquires GPS lock. Strategies (2) and (3) increase the utility region around the node with
GPS lock, but they also risk creating implicit synchronisation between nodes that receive a
useful beacon. This may cause several nodes to try to forward the beacon at the same time
instant, leading to collisions, retransmissions, and packet delays. We implement a simple
back-off mechanism to mitigate any implicit synchronisation, where a node receiving a useful
beacon backs off for a random time within a maximum time window prior to forwarding
the beacon. We set a nominal time window of 1 second.

Using our simulator, we evaluate the impact of the 3 forwarding strategies, observing
the number of transmitted, received, and useful beacons for each forwarding strategy. We
also track the total uncertainty gain in meters for each strategy, which is the aggregated
difference in distance between a node’s old and new positions upon receiving a useful beacon.
We run the simulation over 1 day for the whole cow position dataset with a fixed contact
radius of 5m and event-based beaconing. We also define a beacon utility function:

e =
uncertainty gain

transmitted beacons

to quantify the average uncertainty gain per transmitted beacon and a useful beacon rate
θ as the ratio of useful beacons to received beacons. Table III summarises the results.
Multi-hop forwarding has an incremental improvement in the number of useful beacons and
uncertainty gain, but that comes at the cost of nearly 50% increase in transmitted and
received beacons. These figures deliver a higher useful rate and beacon utility for the no
forwarding case compared to both 1-hop forwarding and multi-hop forwarding.

Figure 22 sheds further light on these results. The strategies consume similar energy and
yield similar error rates, with a 10% improvement for the multi-hop forwarding strategy
for both those metrics. The tradeoff in energy is clear: the no forwarding strategy has the
lowest radio power consumption, but its GPS has to turn on more often; the multi-hop for-
warding strategy is overly aggressive in forwarding beacons, resulting in higher radio power
consumption yet lower GPS power consumption. Note that while the multi-hop forwarding
strategy does not yield significant energy savings for our scenario, its benefits may increase
for other applications with different mobility patterns. The metrics we have presented in
this section can be used to determine the utility of multi-hop beacon forwarding for new
applications.

5.5. Summary

This section has investigated several approaches for combining radio ranging with GPS
duty cycling to save energy in outdoor localisation systems. Event-based beaconing with
a constant contact radius of 5m performs best for our application. While beacon forward-
ing provides incremental energy savings, single hop event-based beaconing is simpler to
implement and manage, and it remains our strategy of choice.

6. CONCLUSION AND PERSPECTIVES

This paper has proposed and validated short-range radio contact logging as an effective com-
plement to GPS duty cycling for balancing the positioning accuracy and energy-efficiency
tradeoff. Given application constraints that comprise a target lifetime, acceptable uncer-
tainty, and error tolerance, we have established a strategy for tailoring the contact radius
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Fig. 22. Impact of beacon forwarding strategy on power consumption and error rates: multi-hop beacon
forwarding marginally improves performance. All contact logging results use event-based beaconing.

and beacon period for any mobile sensor network application. We have shown how our
strategy can rely on key features of GPS modules, through empirical characterisation of
two generations of modules. A key contribution of this paper is to define a target accuracy
for the GPS module that minimises the active time of the module within a duty cycling
strategy. We have determined through simulations based on our empirical data set that
a contact radius of 5m performs best for our application. We then proceeded to identify
the most suitable beacon period for our dataset, based on which we proposed event-driven
beaconing that reactively sends beacons only when nodes detect state changes.

While the event-driven beaconing strategy yields the lowest power consumption and error
rate in our scenario, the optimal strategy is highly dependent on the mobility pattern of
the nodes, their clustering characteristics, and application requirements. For instance, an
application with highly mobile nodes may benefit from a more proactive beaconing strategy
that transmits beacons at short periodic intervals. RSSI-based contact logging did not yield
significant benefits over statically set contact radii, except for providing a dynamic contact
radius. It may not suit radios with no RSSI or high multi-path deployments.

We have also studied the impact of beacon forwarding. Multi-hop forwarding results in
a 10% improvement in both energy consumption and error rate over the no-forwarding
strategy. Multi-hop forwarding reduces GPS duty cycles at the cost of increased radio duty
cycles. Because our simulations consider a static AAU of 50m, the opportunities for multi-
hop forwarding of beacons are limited as beacons stop being useful after 2 or 3 hops. We
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expect that a dynamic AAU would benefit more from multi-hop beaconing, since useful
beacons can propagate for a larger number of hops when the AAU is higher.

The static nodes that serve as a routing backbone for the mobile nodes could also serve
as local positioning anchors. The area of relative positioning through powerful local beacons
is indeed a well-investigated area. While our current virtual fencing deployments do include
static nodes that can be used for this purpose, we are aiming towards infrastructure-free
deployments for high scalability in monitoring mobile devices. The GPS duty cycling and ra-
dio contact logging strategies here represent a step towards infrastructure-free deployments.
However, deployments that do include static nodes for operational purposes can certainly
enable mobile nodes to perform radio triangulation when they are in range of one or more
static nodes.

Another possible enabler of more sparse deployments is the use of inertial sensors, such
as accelerometers and magnetometers, to refine position estimates while the GPS is pow-
ered off. While this is a proven strategy in other GPS tracking scenarios, its utility for low
power devices is an open question. The accelerometer in particular involves an inherent
tradeoff between its accuracy for predicting speed and its sampling rate. It can only provide
precise estimates of speed for high sample rates, which incurs high energy cost. The use
of accelerometers as boolean indicators of motion is certainly an option for input to the
algorithm. Magnetometers can certainly provide accurate heading data for low energy cost,
thereby limiting the uncertainty growth within a angular cone rather than a circle. This
comes at a cost of increasingly computational complexity for growing the irregular uncer-
tainty region as the mobile nodes change directions. Finally, the use of pedometers can be
useful for counting footsteps of animals or people, and can serve as an additional input to
the speed and distance estimation.

Some concepts from this paper, such as dynamically changing the AAU according to
distance from the fence, are specific to the cattle monitoring application. However, our
overall strategy is applicable to other mobile tracking applications, such as smart phone
social networking applications. Consider groups of friends with smart phones that regularly
meet and use location-based services that rely on GPS. If all smart phones keep their
GPS modules on to run the services, they will most likely deplete their batteries quickly.
Alternatively, the use of contact logging to share the GPS load among the smart phones can
prolong the lifetime of all devices. Applying our strategy to this application would require
mobility models, clustering patterns, and application-specific user policies to determine the
best configuration.

Acknowledgements

This work was supported by the Sensors and Sensor Networks Transformation Capability
Platform at CSIRO. The authors would like to thank Greg Bishop-Hurley, Philip Valencia,
and Brano Kusy for their valuable inputs in realising this work.

REFERENCES

Butler, Z., Corke, P., Peterson, R., and Rus, D. 2004. Virtual fences for controlling cows. In Proc. Int.
Conf. Robotics and Automation. New Orleans, 4429–4436.

Chan, L.-W., Chiang, J.-R., Chen, Y.-C., nan Ke, C., jen Hsu, J. Y., and Chu, H.-H. 2006. Collaborative
localization: Enhancing wifi-based position estimation with neighborhood links in clusters. In Pervasive.
50–66.

Constandache, I., Gaonkar, S., and et al. 2009. Enloc: Energy-efficient localization for mobile phones.
In INFOCOM. 2716–2720.

Guo, Y., Poulton, G., Corke, P., Bishop-Hurley, G., Wark, T., and Swain, D. 2009. Using accelerom-
eter, high sample rate gps and magnetometer data to develop a cattle movement and behaviour model.
Ecological Modelling 220, 17, 2068 – 2075.

Ilyas, M. and Dorf, R. C., Eds. 2003. The handbook of ad hoc wireless networks. CRC Press, Inc., Boca
Raton, FL, USA.

ACM Transactions on Sensor Networks, Vol. 9, No. 3, Article A, Publication date: August 2013.



A:32 Raja Jurdak et al.

Jurdak, R., Corke, P., Dharman, D., and Salagnac, G. 2010. Adaptive gps duty cycling and radio
ranging for energy-efficient localization. In ACM Conference on Embedded Networked Sensor Systems
(Sensys) (Zurich). 57–70.

Jurdak, R., Ruzzelli, A. G., and O’Hare, G. P. 2008. Adaptive radio modes in sensor networks: How
deep to sleep? In IEEE (SECON) (San Francisco). 386–394.

Kjaergaard, M. B., Langdal, J., Godsk, T., and Toftkjaer, T. 2009. Entracked: energy-efficient robust
position tracking for mobile devices. In Proceedings of the 7th international conference on Mobile
systems, applications, and services. MobiSys ’09. ACM, New York, NY, USA, 221–234.

Kusy, B., Sallai, J., Balogh, G., Ledeczi, A., Protopopescu, V., Tolliver, J., DeNap, F., and
Parang, M. 2007. Radio interferometric tracking of mobile wireless nodes. In Proceedings of the 5th
international conference on Mobile systems, applications and services. MobiSys ’07. ACM, New York,
NY, USA, 139–151.

Lin, G., Noubir, G., and Rajaraman, R. 2004. Mobility models for ad hoc network simulation. In INFO-
COM.

Lin, K., Kansal, A., and et al. 2010. Energy-accuracy trade-off for continuous mobile device location. In
MobiSys. 285–298.

Liu, J., Zhang, Y., and Zhao, F. 2006. Robust distributed node localization with error management. In
MobiHoc. 250–261.

Paek, J., Kim, J., and Govindan, R. 2010. Energy-efficient rate-adaptive gps-based positioning for smart-
phones. In MobiSys. 299–314.

Patil, B., Patil, R., and Pittet, A. 2011. Energy saving techniques for gps based tracking applications.
In Integrated Communications, Navigation and Surveilance Conference (ICNS), 2011. J8–1 –J8–10.

Pattern, S., Poduri, S., and Krishnamachari, B. 2003. Energy-quality tradeoffs in sensor track- ing:
Selective activation with noisy measurements. In IPSN.

Srinivasan, K. and Levis, P. 2006. Rssi is under appreciated. In EmNets.

Thorstensen, B., Syversen, T., Bjørnvold, T.-A., and Walseth, T. 2004. Electronic shepherd - a low-
cost, low-bandwidth, wireless network system. In Proceedings of the 2nd international conference on
Mobile systems, applications, and services. MobiSys ’04. ACM, New York, NY, USA, 245–255.

Tilak, S., Kolar, V., Abu-Ghazaleh, N. B., and Kang, K.-D. 2005. Dynamic localization control for
mobile sensor networks. In IPCCC. 587–592.

ublox. Tim-4x data sheet gps. Website. http://www.u-blox.com/images/downloads/Product Docs/TIM-
4x Data Sheet%28GPS.G4-MS4-07013%29.pdf.

ublox. Ubx-g5010 product summary. Website. http://www.u-blox.com/images/downloads/Product Docs/UBX-
G5010 Prod Summary%28GPS.G5-X-06042%29.pdf.

Wark, T., Crossman, C., Hu, W., Guo, Y., Valencia, P., Sikka, P., Corke, P., Lee, C., Henshall,
J., Prayaga, K., O’Grady, J., Reed, M., and Fisher, A. 2007. The design and evaluation of a
mobile sensor/actuator network for autonomous animal control. In Proceedings of the 6th international
conference on Information processing in sensor networks. IPSN ’07. ACM, New York, NY, USA, 206–
215.

Winter, J., Xu, Y., and Lee, W. 2004. Prediction-based strategies for energy saving in object tracking
sensor networks. In IEEE ICMDM.

You, C.-W. 2008. Enabling energy-efficient localization services on sensor network positioning systems.
Ph.D. thesis.

You, C.-W., Huang, P., Chu, H.-h., Chen, Y.-C., Chiang, J.-R., and Lau, S.-Y. 2008. Impact of sensor-
enhanced mobility prediction on the design of energy-efficient localization. Ad Hoc Netw. 6, 1221–1237.

Zhang, P. and et al., C. S. 2005. Habitat Monitoring with ZebraNet: Design and Experiences. Artech
House, Chapter Wireless Sensor Networks: A Systems Perspective.

ACM Transactions on Sensor Networks, Vol. 9, No. 3, Article A, Publication date: August 2013.


